

ARDEX RA 56 Part B

Ardex (Ardex NZ)

Chemwatch: **7953-18** Version No: 2.1

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 2

Issue Date: 05/05/2025 Print Date: 11/05/2025 L.GHS.NZL.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier Product name ARDEX RA 56 Part B **Chemical Name** Not Applicable Synonyms Not Available

Chemical formula Not Applicable

Not Available

Relevant identified uses of the substance or mixture and uses advised against	
B 1 441 455 1	Joint treatment.

Relevant identified uses Use according to manufacturer's directions.

Details of the manufacturer or importer of the safety data sheet

Registered company name	Ardex (Ardex NZ)
Address	32 Lane Street Woolston Christchurch New Zealand
Telephone	+64 3384 3029 +64 3384 9779
Fax	+64 3384 9779
Website	www.ardex.co.nz
Email	info@ardexnz.com

Emergency telephone number

Other means of identification

Association / Organisation	Ardex (Ardex NZ)
Emergency telephone number(s)	+64 3 373 6900
Other emergency telephone number(s)	0800 764 766 (NZ NPC)

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

Classification ^[1]	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI
Determined by Chemwatch using GHS/HSNO criteria	6.3A, 6.4A, 6.5B (contact), 9.1B, 6.1E (respiratory tract irritant)

Label elements

Hazard pictogram(s)

Signal word

Warning

Page 2 of 16 **ARDEX RA 56 Part B** Issue Date: 05/05/2025 Print Date: 11/05/2025

Hazard statement(s)

H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.
H335	May cause respiratory irritation.
H411	Toxic to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P302+P352	IF ON SKIN: Wash with plenty of water.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P391	Collect spillage.
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
8001-79-4	50-75	<u>castor oil</u>
102093-68-5	5-10	2.6-bis(methylthio)-4-methyl-1,3-benzenediamine
104983-85-9	1-5	4,6-bis(methylthio)-2-methyl-1,3-benzenediamine
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

D

Description of first aid measures		
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. For thermal burns: Decontaminate area around burn. Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides	

- Use compresses if running water is not available.
 Cover with sterile non-adhesive bandage or clean cloth.
 Do NOT apply butter or ointments; this may cause infection.
- ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur.

- For second-degree burns (affecting top two layers of skin)

 Cool the burn by immerse in cold running water for 10-15 minutes.

 Use compresses if running water is not available.

 Do NOT apply ice as this may lower body temperature and cause further damage.

Chemwatch: 7953-18 Page 3 of 16 Issue Date: 05/05/2025 Version No. 2.1 Print Date: 11/05/2025

ARDEX RA 56 Part B

▶ Do NOT break blisters or apply butter or ointments; this may cause infection. ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lay the person flat. ▶ Elevate feet about 12 inches. ▶ Elevate burn area above heart level, if possible. Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound Separate burned toes and fingers with dry, sterile dressings. ▶ Do not soak burn in water or apply ointments or butter; this may cause infection. ▶ To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up ▶ Check pulse and breathing to monitor for shock until emergency help arrives. If fumes or combustion products are inhaled remove from contaminated area Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ▶ Transport to hospital, or doctor, without delay. ▶ If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration Observe the patient carefully. Ingestion Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

The material may induce methaemoglobinaemia following exposure.

- Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits.
- Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed.
- Symptomatic patients with methaemoglobin levels over 30% should receive methylene blue. (Cyanosis, alone, is not an indication for treatment). The usual dose is 1-2 mg/kg of a 1% solution (10 mg/ml) IV over 50 minutes; repeat, using the same dose, if symptoms of hypoxia fail to subside within 1 hour
- Thorough cleansing of the entire contaminated area of the body, including the scalp and nails, is of utmost importance.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Sampling Time Comment Determinant Index 1. Methaemoglobin in blood 1.5% of haemoglobin During or end of shift B, NS, SQ

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant: also observed after exposure to other materials

SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

SECTION 5 Firefighting measures

Extinguishing media

- Foam
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Fire Incompatibility

Special hazards arising from the substrate or mixture

Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus.

Fire Fighting

- Prevent, by any means available, spillage from entering drains or water course.
- ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
 - ▶ DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

Combustible

- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Fire/Explosion Hazard

Combustion products include:

carbon dioxide (CO2) acrolein

nitrogen oxides (NOx)

sulfur oxides (SOx) other pyrolysis products typical of burning organic material.

CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

SECTION 6 Accidental release measures

Chemwatch: **7953-18** Page 4 of 16

Version No: 2.1 Print Date: 11/05/2025 **ARDEX RA 56 Part B**

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

methods and material for containment and cleaning up		
Minor Spills	Environmental hazard - contain spillage. Slippery when spilt. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.	
Major Spills	Environmental hazard - contain spillage. Slippery when spilt. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.	

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling	
Safe handling	DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
Other information	Refrigerated storage normally required. Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Glass container is suitable for laboratory quantities DO NOT use aluminium or galvanised containers Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

NOT Available		
Ingredient	Original IDLH	Revised IDLH
castor oil	Not Available	Not Available
2,6-bis(methylthio)-4-methyl- 1,3-benzenediamine	Not Available	Not Available
4,6-bis(methylthio)-2-methyl- 1,3-benzenediamine	Not Available	Not Available

Issue Date: 05/05/2025

ARDEX RA 56 Part B

Page 5 of 16 Issue Date: 05/05/2025 Print Date: 11/05/2025

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50- 100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100- 200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200- 500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. ICDC NIOSH Current Intelligence Bulletin 591

Skin protection

See Hand protection below

Hands/feet protection

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact, chemical resistance of glove material,
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min

ARDEX RA 56 Part B

Page 6 of 16 Issue Date: 05/05/2025

Print Date: 11/05/2025

Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Neoprene gloves Polyethylene gloves Body protection See Other protection below Overalls. P.V.C apron. Barrier cream. Other protection Skin cleansing cream. Eve wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

ARDEX RA 56 Part B

Material	CPI
NEOPRENE	A

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AK-AUS / Class1 P2	-
up to 50	1000	-	AK-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	AK-2 P2
up to 100	10000	-	AK-3 P2
100+			Airline**

- * Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

76ak-p()

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties Yellow liquid with characteristic odour Appearance Relative density (Water = 1) Not Available Physical state Liquid Partition coefficient n-octanol Odour Characteristic Not Available / water **Auto-ignition temperature** Odour threshold Not Available Not Available (°C) Decomposition pH (as supplied) Not Available Not Available temperature (°C) Melting point / freezing point Not Applicable Viscosity (cSt) Not Available Initial boiling point and Not Available Molecular weight (g/mol) Not Applicable boiling range (°C) Flash point (°C) Not Available Taste Not Available **Evaporation rate** Not Available **Explosive properties** Not Available Flammability Not Applicable Oxidising properties Not Available

ARDEX RA 56 Part B

Page 7 of 16 Issue Date: 05/05/2025 Print Date: 11/05/2025

Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

a) Acute Toxicity	Based on available data, the classification criteria are not met.		
b) Skin Irritation/Corrosion	There is sufficient evidence to classify this material as skin corrosive or irritating.		
c) Serious Eye Damage/Irritation	There is sufficient evidence to classify this material as eye damaging or irritating		
d) Respiratory or Skin sensitisation	There is sufficient evidence to classify this material as sensitising to skin or the respiratory system		
e) Mutagenicity	Based on available data, the classification criteria are not met.		
f) Carcinogenicity	Based on available data, the classification criteria are not met.		
g) Reproductivity	Based on available data, the classification criteria are not met.		
h) STOT - Single Exposure	There is sufficient evidence to classify this material as toxic to specific organs through single exposure		
i) STOT - Repeated Exposure	Based on available data, the classification criteria are not met.		
j) Aspiration Hazard	Based on available data, the classification criteria are not met.		

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death,

Inhalation hazard is increased at higher temperatures.

Not normally a hazard due to non-volatile nature of product

Fine mists generated from plant/ vegetable (or more rarely from animal) oils may be hazardous. Extreme heating for prolonged periods, at high temperatures, may generate breakdown products which include acrolein and acrolein-like substances.

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

Skin Contact

The material may accentuate any pre-existing dermatitis condition

Daily application of 0.5 ml of castor oil to the skin of adult female albino rabbits produced mild irritant reactions, including slight erythema and edema, acanthosis and disorganization of the basal layer, and slight inflammation of the dermis (Rantuccio et al., 1981) Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.

Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions. Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided

Many phenylenediamine derivatives are suspected of producing occupational dermatoses with clinical course of the condition closely related to exposure; the dermatoses generally disappear when exposure ceases and reappears if exposure reoccurs.

Oxidation of the phenylenediamines reduces dermal absorption. All three isomers are absorbed following ingestion. m- and pphenylenediamine are metabolised rapidly and excreted predominantly in acetylated form in the urine. There is no selective accumulation of Chemwatch: 7953-18 Page 8 of 16 Issue Date: 05/05/2025 Version No. 2.1 Print Date: 11/05/2025

ARDEX RA 56 Part B

p-phenylenediamine in target organs; corresponding studies have not been carried out with o- or m-phenylenediamine. In contrast to mphenylenediamine, for which binding to DNA in the kidney and liver has been described, p-phenylenediamine was found to bind to protein in the liver but not to DNA. Oedema, possibly caused by increased vascular permeability, is the dominant symptom of intoxication with pphenylenediamine, while oedema occurs rarely, if ever, following intoxication with o- or m-phenylenediamine. o-, m- and p-Phenylenediamine cause gene mutation in bacteria following metabolic activation. Additionally, o-phenylenediamine has been

observed to damage bacterial DNA in the repair test. All three isomers had predominantly no effect on gene mutation in fungi, even with metabolic activation, while positive results were recorded with o-, m- and p-phenylenediamine in mammalian cells. Studies of the damaging effect of o-phenylenediamine on DNA and chromosomes in mammalian cells produced predominantly positive results, even without metabolic activation. The damaging effects of m- and p-phenylenediamine on DNA and chromosomes, however, vary according to the test system, and both positive and negative findings have been obtained. The three phenylenediamine isomers have been observed to form strongly mutagenic oxidation products which influence test results.

There are a few studies on the carcinogenic effect of m- and p-phenylenediamine using various methods of administration in which only subcutaneous injection produced localised tumours. o-Phenylenediamine, on the other hand, produced liver tumours in the rat and mouse only after oral administration. No short-term carcinogenicity studies have been carried out with o-phenylenediamine. m- and pphenylenediamine led to cell transformations in vitro; in vivo studies of tumour promotion in the liver were negative

o-, m- and p-Phenylenediamine do not impair fertility in spite of the fact that o-phenylenediamine was observed to have embryotoxic and sperm-damaging effects in unvalidated studies. p-Phenylenediamine is not teratogenic. Embryotoxic and slight teratogenic effects were observed with m-phenylenediamine at clearly maternotoxic doses, possibly as a result of a deficiency of nutrient supply to the fetus. No studies have been carried out on the teratogenic effect of o-phenylenediamine.

o-, m- and p-phenylenediamine all form methaemoglobin. The highest level of methaemoglobin formation was observed with mphenylenediamine.

There are only isolated reports of human sensitization by o- and m-phenylenediamine.

p-Phenylenediamine, on the other hand, is a very common allergen in man because of allergy to the para-group. Cases of photosensitisation induced by p-phenylenediamine have also been recorded.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The material produces severe skin irritation; evidence exists, or practical experience predicts, that the material either:

- produces severe inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant and severe inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.
- Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis

NOTE: Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

Eve

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals. Repeated or prolonged eye contact may cause inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems

Glyceryl triesters (triglycerides), following ingestion, are metabolised to monoglycerides, free fatty acids and glycerol, all of which are absorbed in the intestinal mucosa and undergo further metabolism. Medium chain triglycerides (C8-C10) appear to have relatively rapid metabolism and elimination from blood and tissues compared to long chain triglycerides (C16-C18). Little or no acute, subchronic or chronic oral toxicity was seen in animal studies unless levels approached a significant percentage of calorific intake. Subcutaneous injections of tricaprylin in rats over a five-week period caused granulomatous reaction characterised by oil deposits surrounded by macrophages. Diets containing substantial levels of tributyrin produced gastric lesions in rats fed for 3-35 weeks; the irritative effect of the substance was thought to be the cause of tissue damage

Chronic

Dermal application was not associated with significant irritation in rabbit skin; ocular exposures were, at most, mildly irritating to rabbit eyes No evidence of sensitisation or photosensitisation was seen in a guinea pig maximisation test. Most of the genotoxicity test systems were negative. Tricaprylin, trioctanoin and triolein have been used, historically, as vehicles in carcinogenicity testing of other chemicals. In one study, subcutaneous injection of tricaprylin, in newborn mice, produced more tumours in lymphoid tissue than were seen in untreated animals whereas, in another study, subcutaneous or intraperitoneal injection in 4- to 6-week old female mice produced no tumours. Trioctanoin injected subcutaneously in hamster produced no tumours; when injected intraperitoneally in pregnant rats there was an increase in mammary tumours among the off-spring but similar studies in pregnant hamsters and rabbits showed no tumours in the off-spring. The National Toxicological Program conducted a 2-year study in rats given tricaprylin by gavage. The treatment was associated with a statistically significant dose-related increase in pancreatic acinar cell hyperplasia and adenoma but there were no acinar carcinomas. Tricaprylin is not teratogenic to mice or rats but some reproductive effects were seen in rabbits. A low level of foetal eye abnormalities and a small percentage of abnormal sperm were reported in mice injected with trioctanoin.

Trioctanoin was also used as a vehicle control in a sperm abnormality test. Ten male control mice received an intraperitoneal injection of 0.25 ml trioctanoin 0.05 g/kg of benz[a]pyrene (known reproductive toxicant and mutagen) daily for 5 days and sperm from caudae epididymides analysed. Based on these studies there is no sufficient evidence to classify the trioctanoin as reproductive toxicant. In the human body, high levels of triglycerides in the bloodstream have been linked to atherosclerosis, heart disease and stroke. However, the relative negative impact of raised levels of triglycerides compared to that of LDL:HDL ratios is as yet unknown. The risk can be partly accounted for by a strong inverse relationship between triglyceride level and HDL-cholesterol level. But the risk is also due to high triglyceride levels increasing the quantity of small, dense LDL particles

Prolonged use of purgatives/ laxatives may produce watery diarrhoea with excessive loss of water and electrolytes (particularly potassium), muscular weakness and weight loss. Changes in intestinal musculature associated with malabsorption, and dilation of the bowel, similar to ulcerative colitis and to megacolon may also result. Cardiac and renal symptoms have also been reported.

ARDEX RA 56 Part B

TOXICITY	IRRITATION
Not Available	Not Available

ARDEX RA 56 Part B

Page 9 of 16 Issue Date: 05/05/2025

Print Date: 11/05/2025

castor oil	TOXICITY	IRRITATION
	Oral (Rat) LD50: >4800 mg/kg ^[1]	Eye (Rodent - rabbit): 500mg - Mild
		Eye: no adverse effect observed (not irritating) $^{[1]}$
		Skin (Human - man): 50mg/48H - Mild
Castor on		Skin (Rodent - guinea pig): 100mg/24H - Mild
		Skin (Rodent - rabbit): 100mg/24H - Severe
		Skin (Rodent - rat): 100mg/24H - Mild
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
2,6-bis(methylthio)-4-methyl- 1,3-benzenediamine	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Not Available
r,s-benzenediamine	Oral (Rat) LD50: 1515 mg/kg ^[2]	
4,6-bis(methylthio)-2-methyl- 1,3-benzenediamine	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Not Available
	Oral (Rat) LD50: 1515 mg/kg ^[2]	
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

CASTOR OIL

No significant acute toxicological data identified in literature search.

For aliphatic fatty acids (and salts)

Acute oral (gavage) toxicity:

The acute oral LD50 values in rats for both were greater than >2000 mg/kg bw Clinical signs were generally associated with poor condition following administration of high doses (salivation, diarrhoea, staining, piloerection and lethargy). There were no adverse effects on body weight in any study. In some studies, excess test substance and/or irritation in the gastrointestinal tract was observed at necropsy. Skin and eye irritation potential, with a few stated exceptions, is chain length dependent and decreases with increasing chain length According to several OECD test regimes the animal skin irritation studies indicate that the C6-10 aliphatic acids are severely irritating or corrosive, while the C12 aliphatic acid is irritating, and the C14-22 aliphatic acids generally are not irritating or mildly irritating. Human skin irritation studies using more realistic exposures (30-minute,1-hour or 24-hours) indicate that the aliphatic acids have sufficient, good or very good skin compatibility.

Animal eye irritation studies indicate that among the aliphatic acids, the C8-12 aliphatic acids are irritating to the eye while the C14-22 aliphatic acids are not irritating.

Eye irritation potential of the ammonium salts does not follow chain length dependence; the C18 ammonium salts are corrosive to the eyes. Dermal absorption:

The in vitro penetration of C10, C12, C14, C16 and C18 fatty acids (as sodium salt solutions) through rat skin decreases with increasing chain length. At 86.73 ug C16/cm2 and 91.84 ug C18/cm2, about 0.23% and less than 0.1% of the C16 and C18 soap solutions is absorbed after 24 h exposure, respectively.

Sensitisation:

No sensitisation data were located.

Repeat dose toxicity:

Repeated dose oral (gavage or diet) exposure to aliphatic acids did not result in systemic toxicity with NOAELs greater than the limit dose of 1000 mg/kg bw. .

Mutagenicity

Aliphatic acids do not appear to be mutagenic or clastogenic in vitro or in vivo

Carcinogenicity

No data were located for carcinogenicity of aliphatic fatty acids.

Reproductive toxicity

No effects on fertility or on reproductive organs, or developmental effects were observed in studies on aliphatic acids and the NOAELs correspond to the maximum dose tested. The weight of evidence supports the lack of reproductive and developmental toxicity potential of the aliphatic acids category.

Given the large number of substances in this category, their closely related chemical structure, expected trends in physical chemical properties, and similarity of toxicokinetic properties, both mammalian and aquatic endpoints were filled using read-across to the closest structural analogue, and selecting the most conservative supporting substance effect level.

Structure-activity relationships are not evident for the mammalian toxicity endpoints. That is, the low mammalian toxicity of this category of substances limits the ability to discern structural effects on biological activity. Regardless, the closest structural analogue with the most conservative effect value was selected for read across. Irritation is observed for chain lengths up to a cut-off" at or near 12 carbons). Metabolism:

The aliphatic acids share a common degradation pathway in which they are metabolized to acetyl-CoA or other key metabolites in all living systems. Common biological pathways result in structurally similar breakdown products, and are, together with the physico-chemical properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health. Differences in metabolism or biodegradability of even and odd numbered carbon chain compounds or saturated/ unsaturated compounds are not expected; even-and odd-numbered carbon chain compounds, and the saturated and unsaturated compounds are naturally occurring and are expected to be metabolized and biodegraded in the same manner.

The acid and alkali salt forms of the homologous aliphatic acid are expected to have many similar physicochemical and toxicological properties when they become bioavailable; therefore, data read across is used for those instances where data are available for the acid form but not the salt, and vice versa. In the gastrointestinal tract, acids and bases are absorbed in the undissociated (non-ionised) form by simple diffusion or by facilitated diffusion. It is expected that both the acids and the salts will be present in (or converted to) the acid form in the stomach. This means that for both aliphatic acid or aliphatic acid salt, the same compounds eventually enter the small intestine, where equilibrium, as a result of increased pH, will shift towards dissociation (ionised form).

Hence, the situation will be similar for compounds originating from acids and therefore no differences in uptake are anticipated Note that the saturation or unsaturation level is not a factor in the toxicity of these substances and is not a critical component of the read across process..

Toxicokinetics:

The turnover of the [14C] surfactants in the rat showed that there was no significant difference in the rate or route of excretion of 14C given by intraperitoneal or subcutaneous administration. The main route of excretion was as 14CO2 in the expired air at 6 h after administration. The remaining material was incorporated in the body. Longer fatty acid chains are more readily incorporated than shorter chains. At ca. 1.55 and 1.64 mg/kg bw, 71% of the C16:0 and 56% of the C18:0 was incorporated and 21% and 38% was excreted as 14CO2, respectively.

Glycidyl fatty acid esters (GEs), one of the main contaminants in processed oils, are mainly formed during the deodorisation step in the refining process of edible oils and therefore occur in almost all refined edible oils. GEs are potential carcinogens, due to the fact that they

ARDEX RA 56 Part B

Issue Date: **05/05/2025**Print Date: **11/05/2025**

readily hydrolyze into the free form glycidol in the gastrointestinal tract, which has been found to induce tumours in various rat tissues. Therefore, significant effort has been devoted to inhibit and eliminate the formation of GEs

GEs contain a common terminal epoxide group but exhibit different fatty acid compositions. This class of compounds has been reported in edible oils after overestimation of 3-monochloropropane-1,2-diol (3-MCPD) fatty acid esters analysed by an indirect method, 3-MCPD esters have been studied as food processing contaminants and are found in various food types and food ingredients, particularly in refined edible oils. 3-Monochloropropane-1,2-diol (3-MCPD) and 2-monochloropropane-1,3-diol (2-MCPD) are chlorinated derivatives of glycerol (1,2,3-propanetriol). 3- and 2-MCPD and their fatty acid esters are among non-volatile chloropropanols, Glycidol is associated with the formation and decomposition of 3- and 2-MCPD. It forms monoesters with fatty acids (GE) during the refining of vegetable oils. Chloropropanols are formed in HVP during the hydrochloric acid-mediated hydrolysis step of the manufacturing process. In food production, chloropropanols form from the reaction of endogenous or added chloride with glycerol or acylglycerol.

Although harmful effects on humans and animals have not been demonstrated, the corresponding hydrolysates, 3-MCPD and glycidol, have been identified as rodent genotoxic carcinogens, ultimately resulting in the formation of kidney tumours (3-MCPD) and tumours at other tissue sites (glycidol). Therefore, 3-MCPD and glycidol have been categorised as "possible human carcinogens (group 2B) and "probably carcinogenic to humans (group 2A), respectively, by the International Agency for Research on Cancer (IARC).

Diacylglyceride (DAG) based oils produced by one company were banned from the global market due to "high levels" of GEs. Several reports have also suggested that a bidirectional transformation process may occur not only between glycidol and 3-MCPD but also their esterified forms in the presence of chloride ions. The transformation rate of glycidol to 3-MCPD was higher than that of 3-MCPD to glycidol under acidic conditions in the presence of chloride ion.

Precursors of GEs in refined oils have been identified as partial acylglycerols, that is, DAGs and monoacylglycerides (MAGs); however, whether they also originate from triacylglycerides (TAGs) is still a topic of controversial debates. Several authors noted that pure TAGs were stable during heat treatment (such as 235 deg C) for 3 h and were therefore not involved in the formation of GEs. However, experimental results have shown that small amounts of GEs are present in a heat-treated oil model consisting of almost 100% TAGs. The formation of GEs from TAGs can be attributed to the pyrolysis of TAGs to DAGs and MAGs. In contrast, 3-MCPD esters in refined oils can be obtained from TAG. Presently, the mechanism for the formation of GE intermediates and the relationship between GEs and 3-MCPD esters are still unknown.

For Group E aliphatic esters (polyol esters):

According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group E substances are esters of monoacids, mainly common fatty acids, and trihydroxy or polyhydroxyalcohols or polyols, such as pentaerythritol (PE), 2-ethyl-2- (hydroxymethyl)- 1,3-propanediol or trimethylolpropane (TMP), and dipentaerythritol (diPE). The Group E substances often are referred to as "polyol esters" The polyol esters are unique in their chemical characteristics since they lack beta-tertiary hydrogen atoms, thus leading to stability against oxidation and elimination. The fatty acids often range from C5-C10 to as high as C18 (e.g., oleic, stearic, isostearic, tall oil fatty acids) in carbon number and generally are derived from naturally occurring sources. Group E esters may have multiple ester linkages and may include mixed esters derived from different carbon-length fatty acid mixtures. The lack of beta-tertiary hydrogen atoms in the structure of the polyol esters makes them characteristically and chemically stable against oxidation and elimination in comparison to other ester classes or groups. For these reasons, trimethylolpropane (TMP) and pentaerythritol (PE) esters with fatty acids of C5 to C10 carbon-chain length have applications as synthetic lubricants for passenger car motor oil and military and civilian jet engines. TMP and PE esters of C18 acids (e.g., isostearic and oleic acids) also have found use in synthetic lubricant applications, including refrigeration lubricants and hydraulic fluids. Because of their higher thermal stability characteristics, they also find use in a variety of high temperature applications such as industrial oven chain oils, high temperature greases, fire resistant transformer coolants and turbine engines

Polyol esters that are extensively esterified also have greater polarity, less volatility and enhanced lubricity characteristics. **Acute toxicity:** Depending on the degree of esterification, the polyol esters can be resistant or slow towards chemical or enzymatic hydrolysis (i.e., esterase or lipases) as a result of steric hindrance. PE and diPE esters that are capable of being enzymatically hydrolyzed will generate pentaerythritol or dipentaerythritol, and the corresponding fatty acids which, for most of the Group E esters, are comprised mainly of oleic, linoleic and stearic acids as well as the fatty acids in the C5-10 carbon-length. Similarly, TMP esters can undergo metabolism to yield trimethylolpropane (2-ethyl-2-hydroxymethyl-1,3-propanediol) and fatty acid constituents. Pentaerythritol and trimethylolpropane have been reported to have a low order of toxicity The acute oral LD50 for these substances was greater than 2000 mg/kg indicating a relatively low order of toxicity. The similarity in the low order of toxicity for these substances is consistent with their similar chemical structure and physicochemical properties.

Metabolic studies of polyglyceryl esters indicated that these esters are hydrolyzed in the gastrointestinal (GI) tract, and utilization and digestibility studies supported the assumption that the fatty acid moiety is metabolized in the normal manner. Analytical studies have produced no evidence of accumulation of the polyglycerol moiety in body tissues.

In an acute dermal toxicity study in rats, the LD50 of 1,2,3-propanetriol, homopolymer, diisooctadecanoate was>5000 mg/kg Low toxicity was

In an acute dermal toxicity study in rats, the LD50 of 1,2,3-propanetriol, homopolymer, diisooctadecanoate was>5000 mg/kg Low toxicity was reported in acute oral studies. In rats, the LD50 >2000 mg/kg for polyglyceryl-3 caprate, polyglyceryl-3 caprylate, polyglyceryl-4 caprate, diisostearoyl polyglyceryl-3 dimer dilinoleate, and the LD50 was >5000 mg/kg for polyglyceryl-3 iso-stearate, polyglyceryl-3-oleate, polyglyceryl-2 diisostearate and polyglyceryl-3 diisostearate.

The ability to enhance skin penetration was examined for several of the polyglyceryl fatty acid esters.

Repeat dose toxicity: Polyol esters are generally well tolerated by rats in 28-day oral toxicity studies. NOAEL for these substances was

Repeat dose toxicity: Polyol esters are generally well tolerated by rats in 28-day oral toxicity studies. NOAEL for these substances was 1000 mg/kg/day in Sprague-Dawley rats. The TMP ester of heptanoic and octanoic acid did not produce signs of overt systemic toxicity at any dose levels tested (i.e., 100, 300, and 1000 mg/kg/day). There were no treatment-related clinical in-life, functional observation battery, or gross postmortem findings. There were no treatment related mortality, and no adverse effects on body weight, food consumption, clinical laboratory parameters, or organ weights. However, there were increased numbers of hyaline droplets in the proximal cortical tubular epithelium of the 300 and 1000 mg/kg/day in male rats. Based on these findings (hyaline droplets), the NOAEL for this polyol ester was established at 100 mg/kg/day for male rats. Hyaline droplet formation observed in the male kidneys is believed to be a sex/species condition specific to only male rats, which has little relevance to humans.

The results from these repeated dose dermal toxicity studies suggest that polyol esters exhibit a low order of toxicity following repeated application. This may be attributable to similarities in their chemical structures, physicochemical properties, and common metabolic pathways (i.e., esters can be enzymatically hydrolyzed to the corresponding polyalcohol and the corresponding fatty acids) The polyol, hexanedioic acid, mixed esters with decanoic acid, heptanoic acid, octanoic acid and PE, was applied to the skin of groups of 10 (male and female) rats for five days a week for four (4) weeks at dose levels of 0, 125, 500 and 2000 mg/kg/day. Treated animals exhibited no signs indicative of systemic toxicity. No visible signs of irritation were observed a treatment sites. Microscopically, treated skin (viz., greater than or equal to 500 mg/kg/day) exhibited a dose-related increased incidence and severity of hyperplasia and hyperkeratosis of the epidermis and sebaceous gland hyperplasia. These effects were reversible. None of the minor changes in haematology and serum chemistry parameters were considered biologically significant. High dose females (2000 mg/kg/day) exhibited a significant increase in relative adrenal and brain weights when compared to the controls. These differences were attributed to the lower final body weight of the female animals. The NOAEL in this study for systemic toxicity was established as 500 mg/kg/day and 125 mg/kg/day for skin irritation.

Two 28-day study conducted with fatty acids, C5-10, esters with pentaerythritol (CAS RN: 68424-31-7) and dipentaerythritol ester of n-C5/iso-C9 acids (CAS RN: 647028-25-9) showed no signs of overt toxicity. The 90-day study pentaerythritol ester of pentanoic acids and isononanoic acid (CAS RN: 146289-36-3) did not show any signs of overt toxicity. However, increased kidney and liver weights in the male animals was observed. In conclusion, since the effects observed are not considered to be systemic and relevant for humans, the NOAEL was found to exceed 1000 mg/kg bw for all substances based on the result from the 28 and 90-day studies.

Reproductive and developmental toxicity: Since metabolism of the polyol esters can occur, leading to the generation of the corresponding fatty acids and the polyol alcohol (such as pentaerthyritol, trimethylolpropane, and dipentaerythritol), the issue of whether these metabolites may pose any potential reproductive/developmental toxicity concerns is important. However, the polyol alcohols such as pentaerthyritol, trimethylolpropane, and dipentaerythritol, would be expected to undergo further metabolism, conjugation and excretion in the urine. Available evidence indicates that these ester hydrolysates (i.e., hydrolysis products), primarily fatty acids (e.g., heptanoic, octanoic, and decanoic acids) and secondarily the polyol alcohols should exhibit a low order of reproductive toxicity. It can be concluded that this group of high molecular weight polyol esters should not produce profound reproductive effects in rodents.

Genotoxicity: Polyols tested for genetic activity in the Salmonella assay, have been found to be inactive. Several polyol esters have been adequately tested for chromosomal mutation in the in vitro mammalian chromosome aberration assay, and all were inactive. Two TMP esters were also tested for in vivo chromosomal aberration in rats, and both demonstrated no activity. Thus, it is unlikely that these substances are chromosomal mutagens.

Carcinogenicity: In a 2-yr study, 28 male and 28 female rats were fed 5% polyglyceryl ester in the diet. No adverse effects on body weight, feed consumption, haematology values, or survival rate were noted. Liver function tests and renal function tests performed at 59 and 104 wks of the study were comparable between the test group and a control group fed 5% ground nut oil. The carcass fat contained no

examination of major organs showed nothing remarkable

ARDEX RA 56 Part B

polyglycerol, and the levels of free fatty acid, unsaponifiable residue and fatty acid composition of carcass fat were not different from the controls. Organ weights, tumour incidence and tumour distribution were similar in control and test groups. A complete histological

For triglycerides:

Carboxylic acid esters will undergo enzymatic hydrolysis by ubiquitously expressed GI esterases. The rate of hydrolysis is dependant on the structure of the ester, and may therefore be rapid or rather slow. Thus, due to hydrolysis, predictions on oral absorption based on the physico-chemical characteristics of the intact parent substance alone may no longer apply.

When considering the hydrolysis product glycerol, absorption is favoured based on passive and active absorption of glycerol. The Cosmetic Ingredient Review (CIR) Expert Panel has issued three final reports on the safety of 25 triglycerides, i.e., fatty acid triesters of glycerin

High purity is needed for the triglycerides. Previously the Panel published a final report on a diglycerides, and concluded that the ingredients in the diglyceride family are safe in the present practices of use and concentration provided the content of 1,2-diesters is not high enough to induce epidermal hyperplasia. The Panel discussed that there was an increased level of concern because of data regarding the induction of protein kinase C (PKC) and the tumor promotion potential of 1,2-diacylglycerols. The Panel noted that, nominally, glyceryl-1,3-diesters contain 1,2-diesters, raising the concern that 1,2-diesters could potentially induce hyperplasia. The Panel did note that these compounds are more likely to cause these effects when the fatty acid chain length is <=14 carbons, when one fatty acid is saturated and one is not, and when given at high doses, repeatedly. Although minimal percutaneous absorption of triolein has been demonstrated in vivo using guinea pigs (but not hairless mice) and in vitro using full-thickness skin from hairless mice, the Expert Panel recognizes that, reportedly, triolein and tricaprylin can enhance the skin penetration of other chemicals, and recommends that care should be exercised in using these and other glyceryl triesters in cosmetic products.

The Panel acknowledged that some of the triglycerides may be formed from plant-derived or animal-derived constituents. The Panel thus expressed concern regarding pesticide residues and heavy metals that may be present in botanical ingredients. They stressed that the cosmetics industry should continue to use the necessary procedures to sufficiently limit amounts of such impurities in an ingredient before blending them into cosmetic formulations. Additionally, the Panel considered the risks inherent in using animal-derived ingredients, namely the transmission of infectious agents. Although tallow may be used in the manufacture of glyceryl tallowate and is clearly animal-derived, the Panel notes that tallow is highly processed, and tallow derivatives even more so. The Panel agrees with determinations by the U.S. FDA that tallow derivatives are not risk materials for transmission of infectious agents.

Finally, the Panel discussed the issue of incidental inhalation exposure, as some of the triglycerides are used in cosmetic sprays and could possibly be inhaled. For example, triethylhexanoin and triisostearin are reported to be used at maximum concentrations of 36% and 30%, respectively, in perfumes, and 14.7% and 10.4%, respectively, in face powders. The Panel noted that in aerosol products, 95% – 99% of droplets/particles would not be respirable to any appreciable amount. Furthermore, droplets/particles deposited in the nasopharyngeal or bronchial regions of the respiratory tract present no toxicological concerns based on the chemical and biological properties of these ingredients. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects

Cosmetic Ingredient Review (CIR): Amended Safety Assessment of Triglycerides as Used in Cosmetics August 2017 Glyceryl triesters are also known as triglycerides; ingested triglycerides are metabolized to monoglycerides, free fatty acids, and glycerol, all of which are absorbed in the intestinal mucosa and undergo further metabolism. Dermal absorption of Triolein in mice was nil; the oil remained at the application site. Only slight absorption was seen in guinea pig skin. Tricaprylin and other glyceryl triesters have been shown to increase the skin penetration of drugs. Little or no acute, subchronic, or chronic oral toxicity was seen in animal studies unless levels approached a significant percentage of caloric intake. Subcutaneous injections of Tricaprylin in rats over a period of 5 weeks caused a granulomatous reaction characterized by oil deposits surrounded by macrophages. Dermal application was not associated with significant irritation in rabbit skin. Ocular exposures were, at most, mildly irritating to rabbit eyes. No evidence of sensitization or photosensitization was seen in a guinea pig maximization test. Most of the genotoxicity test systems were negative. Tricaprylin, Trioctanoin, and Triolein have historically been used as vehicles in carcinogenicity testing of other chemicals. In one study, subcutaneous injection of Tricaprylin in newborn mice produced more tumors in lymphoid tissue than were seen in untreated animals, whereas neither subcutaneous or intraperitoneal injection in 4- to 6-week-old female mice produced any tumors in another study. Trioctanoin injected subcutaneously in hamsters produced no tumors. Trioctanoin injected intraperitoneally in pregnant rats was associated with an increase in mammary tumors in the offspring compared to that seen in offspring of untreated animals, but similar studies in pregnant hamsters and rabbits showed no tumors in the offspring. One study of Triolein injected subcutaneously in rats showed no tumors at the injection site. As part of an effort to evaluate vehicles used in carcinogenicity studies, the National Toxicology Program conducted a 2-year carcinogenicity study in rats given Tricaprylin by gavage. This treatment was associated with a statistically significant dose-related increase in pancreatic acinar cell hyperplasia and adenoma, but there were no acinar carcinomas, the incidence of mononuclear leukemia was less, and nephropathy findings were reduced, all compared to corn oil controls. Overall, the study concluded that Tricaprylin did not offer significant advantages over corn oil as vehicles in carcinogenicity studies. Trilaurin was found to inhibit the formation of neoplasms initiated by dimethylbenzanthracene (DMBA) and promoted by croton oil. Tricaprylin was not teratogenic in mice or rats, but some reproductive effects were seen in rabbits. A low level of fetal eye abnormalities and a small percentage of abnormal sperm were reported in mice injected with Trioctanoin as a vehicle control. Clinical tests of Trilaurin at 36.3% in a commercial product applied to the skin produced no irritation reactions. Trilaurin, Tristearin, and Tribehenin at 40%, 1.68%, and 0.38%, respectively, in commercial products were also negative in repeated-insult patch tests. Tristearin at 0.32% in a commercial product induced transient, mild to moderate, ocular irritation after instillation into the eyes of human subjects. Based on the enhancement of penetration of other chemicals by skin treatment with glyceryl triesters, it is recommended that care be exercised in using them in cosmetic products.

Cosmetic Ingredient Review (CIR) Expert Panel: Final Report on the Safety Assessment of Trilaurin etc: Int J Toxicol, 20 Suppl 4, 61-94 2001 Some tumorigenic effects have been reported in animal studies using castor oil

The castor seed contains ricin, a toxic protein. Heating during the oil extraction process denatures and inactivates the protein. However, harvesting castor beans may not be without risk. Allergenic compounds found on the plant surface can cause permanent nerve damage, making the harvest of castor beans a human health risk.

The United States Food and Drug Administration (FDA) has categorized castor oil as "generally recognized as safe and effective" (GRASE) for over-the-counter use as a laxative with its major site of action the small intestine where it is digested into ricinoleic acid. Despite castor oil being widely used to start labor in pregnant women, to date there is not enough research to show whether it is effective to ripen the cervix or induce labour

Due to its foul taste a heavy dose of castor oil was formerly used as a humiliating punishment for children and adults. Victims of this treatment did sometimes die, as the dehydrating effects of the oil-induced diarrhea; however, even those victims who survived had to bear the humiliation of the laxative effects resulting from excessive consumption of the oil.

Several instances of sensitization to castor oil in cosmetics have been reported, including an allergic reaction to a make-up remover and contact dermatitis caused by use of a lipstick containing castor oil. Hypersensitivity reactions such as angioedema, rhinitis, asthma, and scarlatiniform rashes have been reported in factory workers involved in the extraction of castor oil, or in association with ingesting it. Relatively few studies of castor oil toxicity have been conducted with experimental animals, and no studies were located concerning its absorption, distribution, metabolism, or excretion.. Subcutaneous injection of 0.1 ml of castor oil in adult C57Bl/6 mice, daily for 4 weeks, was associated with the presence of electron dense lipid inclusions in parenchymal cells of the zona fasciculata of the adrenal gland. Gavage administration of 1 ml/kg to rhesus monkeys, daily for 4 days, caused mild morphological changes in the small intestine, characterized by lipid droplets along the mucosal epithelium and in the underlying lamina propria. This was considered a possible indication that castor oil had reduced lipid metabolism in the intestinal epithelium.

Because of widespread human exposure, large annual production and use, and the lack of studies characterizing the effect of exposures of moderate duration, the subchronic toxicity of castor oil was evaluated by administering diet formulations to F344/N rats and B6C3F1 mice for 13 weeks. Exposure to castor oil in the diet at concentrations up to 10% had no effect on survival of F344/N rats. No significant differences in average food consumption among each sex were observed, although food consumption of male and female rats receiving diets containing 10% castor oil was slightly lower than that of controls. Hematological effects of the castor oil diets among male rats included a slight decrease in MCHC at day 21 in those receiving the 10% diet; a statistically significant decrease in MCV among the 10% group; a decrease in MCH among the 5% and 10% groups; and an increase in platelets among the 1.25%, 5%, and 10% groups. The only change observed among female rats was a statistically significant decrease in reticulocyte counts at day 5 in groups receiving the 0.62% or 10% diets. None of these changes was considered biologically significant.

A treatment- and dose-related increase in the activity of serum alkaline phosphatase was observed in male and female rats at days 5 and 21, and at study termination. Total bile acids were increased among males receiving the higher dietary levels at days 5 and 21 but were not

Chemwatch: 7953-18 Page 12 of 16 Issue Date: 05/05/2025 Version No: 2.1 Print Date: 11/05/2025

ARDEX RA 56 Part B

increased at study termination. Other minor changes included increases in albumin observed at study termination in males receiving 5% diets and at day 5 in females receiving 10% diets, and an increase in urea nitrogen at study termination in males that received 0.62% diets and a decrease at day 5 in females that received castor oil at 10% in the diet. Absolute liver weights and the liver-to-body-weight ratio were increased in male rats that received diets containing 10% castor oil. Heart-to-body-weight ratios were increased in groups of male rats receiving 0.62% 2.5%, and 10% diets; however, absolute heart weights were not increased, and the differences in body weight ratios were small and not considered treatment related .

Using light microscopy, it was determined there were no morphologic changes associated with the slight differences in organ weights between groups. In male rats, there was a slight decrease in epididymal weight (6-7%) which occurred in the middle- and high-dose groups, but this was not dose-related. There were no effects on any other male rat reproductive endpoint, or on any female rat reproductive endpoint. Although there was some variation in epididymal weights, their small magnitude and the absence of changes in other endpoints suggested that there was little or no evidence of any reproductive toxicity associated with castor oil exposure. Histopathologic examination revealed an absence of compound-related lesions in any organ or tissue of rats exposed to castor oil in the diet.

In genetic toxicity studies, castor oil (100-10,000 ug/plate) was not mutagenic in Salmonella typhimurium strains TA100, TA1535, TA97, or TA98 when tested with a preincubation protocol in the presence and the absence of exogenous metabolic activation (S9). Castor oil did not induce sister-chromatid exchanges or chromosome aberrations in Chinese hamster ovary cells treated with concentrations up to 5000 Og/ml with and without S9. No induction of micronuclei was observed in peripheral blood erythrocytes of male and female B6C3F1 mice sampled at the termination of the 13-week study.

Castor oil was found not to be mutagenic or clastogenic in several in vitro genetic toxicity assays, and administration of diets containing up to 10% castor oil was not associated with toxicity to any specific organ, organ system, or tissue in this study

2,6-BIS(METHYLTHIO)-4-METHYL-1,3-**BENZENEDIAMINE & 4,6-**BIS(METHYLTHIO)-2-METHYL-1.3-BENZENEDIAMINE The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons

p-Phenylenediamines are oxidised by the liver microsomal enzymes (S9). Pure p-phenylenediamine is non-mutagenic in but becomes mutagenic after it is oxidized. Azo dyes containing phenylenediamine are mutagenic in certain assay most likely due to the formation of oxidized p-phenylenediamine. Modification of the moieties that can be metabolized to p-phenylenediamine by sulfonation, carboxylation or copper complexation eliminated the mutagenic responses.

Rats given di(methylthio)toluenediamines in the diet for up to 90 days showed increased liver metabolic activity. There were kidney effects observed that were unique to male rats. These effects were similar to changes that have been observed in male rats given hydrocarbons. These effects resolved in animals allowed 30 days recovery. Rats treated for 24 months did not have microscopic alterations in any tissues compared to control animals. Tumors seen in control and treated animals were unusual for the age and strain of rats.

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

- Data either not available or does not fill the criteria for classification Data available to make classification

SECTION 12 Ecological information

Toxicity

ARDEX RA 56 Part B	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48h	Crustacea	100mg/l	2
castor oil	EC50	72h	Algae or other aquatic plants	>100mg/l	2
	NOEC(ECx)	24h	Crustacea	100mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
,6-bis(methylthio)-4-methyl- 1,3-benzenediamine	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
4,6-bis(methylthio)-2-methyl- 1,3-benzenediamine	Not Available	Not Available	Not Available	Not Available	Not Available
			CHA Registered Substances - Ecotoxicological Informa	- ti Ati- Ti-it-	4 110 55

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

ARDEX RA 56 Part B

Page 13 of 16 Issue Date: 05/05/2025 Print Date: 11/05/2025

Ingredient	Bioaccumulation
castor oil	LOW (LogKOW = 18.1)
2,6-bis(methylthio)-4-methyl- 1,3-benzenediamine	LOW (LogKOW = 1.14)
4,6-bis(methylthio)-2-methyl- 1,3-benzenediamine	LOW (LogKOW = 1.36)
Mobility in soil	
Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- ▶ Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous.

Only dispose to the environment if a tolerable exposure limit has been set for the substance.

Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately.

SECTION 14 Transport information

Labels Required Marine Pollutant HAZCHEM •3Z Land transport (UN)

14.1. UN number or ID number	3082	3082	
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains 2,6-bis(methylthio)-4-methyl-1,3-benzenediamine and 4,6 bis(methylthio)-2-methyl-1,3-benzenediamine)		
14.3. Transport hazard class(es)	Class 9 Subsidiary Hazard Not Applicable		
14.4. Packing group	III		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user Special provisions 274; 331; 335; 375 Limited quantity 5 L			

Air transport (ICAO-IATA / DGR)

14.1. UN number	3082	
14.2. UN proper shipping name	Environmentally hazardous substance, liquid, n.o.s. (contains 2,6-bis(methylthio)-4-methyl-1,3-benzenediamine and 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)	
14.3. Transport hazard class(es)	ICAO/IATA Class 9	

Chemwatch: **7953-18**Page **14** of **16**Version No: **2.1**

ARDEX RA 56 Part B

ICAO / IATA Subsidiary Hazard Not Applicable ERG Code 9L 14.4. Packing group Ш Environmentally hazardous 14.5. Environmental hazard A97 A158 A197 A215 Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack 450 L 14.6. Special precautions for Passenger and Cargo Packing Instructions 964 user Passenger and Cargo Maximum Qty / Pack 450 L Passenger and Cargo Limited Quantity Packing Instructions Y964 Passenger and Cargo Limited Maximum Qty / Pack 30 kg G

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3082		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains 2,6-bis(methylthio)-4-methyl-1,3-benzenediamine and 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)		
14.3. Transport hazard class(es)	IMDG Class 9 IMDG Subsidiary Hazard Not Applicable		
14.4. Packing group	III		
14.5 Environmental hazard	Marine Pollutant		
14.6. Special precautions for user	EMS Number F-A, S-F Special provisions 274 335 969 Limited Quantities 5 L		

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

•	
Product name	Group
castor oil	Not Available
2,6-bis(methylthio)-4-methyl- 1,3-benzenediamine	Not Available
4,6-bis(methylthio)-2-methyl- 1,3-benzenediamine	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
castor oil	Not Available
2,6-bis(methylthio)-4-methyl- 1,3-benzenediamine	Not Available
4,6-bis(methylthio)-2-methyl- 1,3-benzenediamine	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard	
HSR002503	Additives Process Chemicals and Raw Materials Subsidiary Hazard Group Standard 2020	

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

castor oil is found on the following regulatory lists

New Zealand Inventory of Chemicals (NZIoC)

2,6-bis(methylthio)-4-methyl-1,3-benzenediamine is found on the following regulatory lists

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Land Transport Rule: Dangerous Goods 2005 - Schedule 1 Quantity limits for dangerous goods

4,6-bis(methylthio)-2-methyl-1,3-benzenediamine is found on the following regulatory lists

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Land Transport Rule: Dangerous Goods 2005 - Schedule 1 Quantity limits for dangerous goods

Additional Regulatory Information

Issue Date: 05/05/2025

Print Date: 11/05/2025

ARDEX RA 56 Part B

Issue Date: **05/05/2025**Print Date: **11/05/2025**

Not Applicable

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantities
Not Applicable	Not Applicable

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
6.5A or 6.5B	120	1	3	

Tracking Requirements

Not Applicable

National Inventory Status

Mational inventory otatas				
National Inventory	Status			
Australia - AIIC / Australia Non- Industrial Use	No (2,6-bis(methylthio)-4-methyl-1,3-benzenediamine; 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)			
Canada - DSL	No (2,6-bis(methylthio)-4-methyl-1,3-benzenediamine; 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)			
Canada - NDSL	No (castor oil)			
China - IECSC	Yes			
Europe - EINEC / ELINCS / NLP	No (2,6-bis(methylthio)-4-methyl-1,3-benzenediamine; 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)			
Japan - ENCS	No (2,6-bis(methylthio)-4-methyl-1,3-benzenediamine; 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)			
Korea - KECI	No (2,6-bis(methylthio)-4-methyl-1,3-benzenediamine; 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)			
New Zealand - NZIoC	Yes			
Philippines - PICCS	Yes			
USA - TSCA	All chemical substances in this product have been designated as TSCA Inventory 'Active'			
Taiwan - TCSI	Yes			
Mexico - INSQ	No (2,6-bis(methylthio)-4-methyl-1,3-benzenediamine; 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)			
Vietnam - NCI	Yes			
Russia - FBEPH	No (2,6-bis(methylthio)-4-methyl-1,3-benzenediamine; 4,6-bis(methylthio)-2-methyl-1,3-benzenediamine)			
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.			

SECTION 16 Other information

Revision Date	05/05/2025
Initial Date	05/05/2025

SDS Version Summary

Version	Date of Update	Sections Updated
2.1	05/05/2025	Toxicological information - Acute Health (eye), Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Physical and chemical properties - Appearance, Toxicological information - Chronic Health, Disposal considerations - Disposal, Exposure controls / personal protection - Engineering Control, Ecological Information - Environmental, Firefighting measures - Fire Fighter (extinguishing media), Firefighting measures - Fire Fighter (fire fighting), Firefighting measures - Fire Fighter (fire incompatibility), First Aid measures - First Aid (eye), First Aid measures - First Aid (inhaled), First Aid measures - First Aid (skin), First Aid measures - First Aid (swallowed), Handling and storage - Handling Procedure, Composition / information on ingredients - Ingredients, Stability and reactivity - Instability Condition, Exposure controls / personal protection - Personal Protection (eye), Exposure controls / personal Protection (Respirator), Exposure controls / personal protection - Personal Protection - Personal Protection (eye), Exposure controls / personal protection - Personal Protection (eye), Exposure controls / personal protection - Personal Protection (hands/feet), Accidental release measures - Spills (minor), Handling and storage - Storage (storage requirement), Handling and storage - Storage (suitable container), Transport information - Transport, Transport Information

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Chemwatch: 7953-18 Page 16 of 16 Issue Date: 05/05/2025

ARDEX RA 56 Part B

Version No: 2.1 Print Date: 11/05/2025

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit,
 IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- ▶ OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ▶ TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- DNEL: Derived No-Effect LevelPNEC: Predicted no-effect concentration
- MARPOL: International Convention for the Prevention of Pollution from Ships
- ▶ IMSBC: International Maritime Solid Bulk Cargoes Code
- IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- EINECS: European Inventory of Existing Commercial chemical Substances
 ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
- ► ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
 PICCS: Philippine Inventory of Chemicals and Chemical Substances
 TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.